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CentOS Errata and Bugfix Advisory 2021:0863
Upstream  details  at  :
https://access.redhat.com/errata/RHBA-2021:0863

The  following  updated  files  have  been  uploaded  and  are
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syncing to the mirrors: ( sha256sum Filename )
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88e796afa3934d3cefb09a6a575714bdc8aede8ee6a3c6b7be0bb59a130d5e
fd  device-mapper-devel-1.02.170-6.el7_9.4.i686.rpm
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ef  device-mapper-event-devel-1.02.170-6.el7_9.4.x86_64.rpm
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12fb546150a8175c1aa95419a75e512972cb4c6c8eea1ade84e3319b1cfada
ea  device-mapper-event-libs-1.02.170-6.el7_9.4.i686.rpm

68e1429d8531b268902804fdf15f6eb8ffcadc2d36315c6090a3edb14eb2ab
13  device-mapper-event-libs-1.02.170-6.el7_9.4.x86_64.rpm
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f9  lvm2-2.02.187-6.el7_9.4.x86_64.rpm
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94  lvm2-libs-2.02.187-6.el7_9.4.i686.rpm
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4f  lvm2-libs-2.02.187-6.el7_9.4.x86_64.rpm
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5b  lvm2-lockd-2.02.187-6.el7_9.4.x86_64.rpm

bff2adfbc894a60df24055ab573b81c8128737c5d8b2530955f48d64f1c121
b5  lvm2-python-boom-1.2-2.el7_9.4.noarch.rpm

c3b133e5f06890f86c2c918c35177dfe1000500cfee3fc5ff248faab874324



f1  lvm2-python-libs-2.02.187-6.el7_9.4.x86_64.rpm

76398082a1500552d12445932d6e5689e02b1ebdced0a38e4003a7fa56871c
e1  lvm2-sysvinit-2.02.187-6.el7_9.4.x86_64.rpm

Source:

e524f3b8629d666bb07fca6db6c4cf645fade58651dee4ccbe851534259adf
17  lvm2-2.02.187-6.el7_9.4.src.rpm
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How To: Time a Command
Have you ever wanted to know how long it takes to complete a
command that you entered in the Linux terminal? Well, wonder
no more!
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This is going to just be a pretty quick article and easy to
follow. There’s not a whole lot to explain and it’s pretty
straightforward. Like often, let’s crack open your default
terminal by pressing CTRL + ALT + T on your keyboard.

Now, let’s take the command:

[code]ls -la[/code]

Unless you have a lot of files, that completes pretty quickly.
But, how fast does it really take? Well, simply add the ‘time‘
command before it. Time is simply described in the man page
as:

time – run programs and summarize system resource usage

And, for today, it’s going to be pretty easy to use that
command. To find out how long it took to list all the files
and folders in a directory, you could use:

[code]time ls -la[/code]

Note how it tells you the time beneath the results and, if you
want to try something bigger, you can take a look at this
command:

[code]for  i  in  {0..99999};  do  echo  “I  love  LinuxTips!”;
done[/code]

That should take a just a little more time, but you can
actually see how long it really took by adding ‘time’ in front
of it. So:

[code]time for i in {0..99999}; do echo “I love LinuxTips!”;
done[/code]

The output at the end is something like this:

real 0m0.566s
user 0m0.423s

https://linux.die.net/man/1/time


sys 0m0.143s

The ‘real’ is how much time it really took. The ‘user’ is how
much time it took for the user. The ‘sys’ is how much time it
took for the system – the amount of time that the kernel
actually devoted to it.

So, there you have it! You can use the time command to find
out how long it takes to run stuff in your terminal. If you’re
playing with scripting and you’re looking to optimize it, this
is a valuable tool. If you’re just a bit curious, then you now
have a new tool.

I told you that it’d be quick and easy! Like always, thanks
for  reading.  Feel  free  to  sign  up  for  the  newsletter.  I
promise to not spam you or sell your email address. 

USN-4881-1:  containerd
vulnerability
It was discovered that containerd incorrectly handled certain
environment
variables. Contrary to expectations, a container could receive
environment
variables  defined  for  a  different  container,  possibly
containing  sensitive
information.

https://linuxtips.gq/2021/03/17/usn-4881-1/
https://linuxtips.gq/2021/03/17/usn-4881-1/


Generating a Software Bill of
Materials  (SBOM)  with  Open
Source Standards and Tooling
Every month there seems to be a new software vulnerability
showing up on social media, which causes open source program
offices and security teams to start querying their inventories
to  see  how  FOSS  components  they  use  may  impact  their
organizations.  

Frequently this information is not available in a consistent
format within an organization for automatic querying and may
result in a significant amount of email and manual effort. By
exchanging software metadata in a standardized software bill
of materials (SBOM) format between organizations, automation
within  an  organization  becomes  simpler,  accelerating  the
discovery process and uncovering risk so that mitigations can
be considered quickly. 

In the last year, we’ve also seen standards like OpenChain
(ISO/IEC  5320:2020)  gain  adoption  in  the  supply  chain.
Customers have started asking for a bill of materials from
their  suppliers  as  part  of  negotiation  and  contract
discussions to conform to the standard. OpenChain has a focus
on ensuring that there is sufficient information for license
compliance,  and  as  a  result,  expects  metadata  for  the
distributed components as well. A software bill of materials
can be used to support the systematic review and approval of
each component’s license terms to clarify the obligations and
restrictions as it applies to the distribution of the supplied
software and reduces risk. 

Kate  Stewart,  VP,  Dependable  Embedded  Systems,  The  Linux
Foundation,  will  host  a  complimentary  mentorship  webinar
entitled Generating Software Bill Of Materials on Thursday,
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March 25 at 7:30 am PST. This session will work through the
minimum elements included in a software bill of materials and
detail the reasoning behind why those elements are included.
To register, please click here. 

Register for webinar
There are many ways this software metadata can be shared. The
common  SBOM  document  format  options  (SPDX,  SWID,  and
CycloneDX)  will  be  reviewed  so  that  the  participants  can
better understand what is available for those just starting. 

This mentorship session will work through some simple examples
and then guide where to find the next level of details and
further references. 

At the end of this session, participants will be on a secure
footing and a path towards the automated generation of SBOMs
as part of their build and release processes in the future. 

The post Generating a Software Bill of Materials (SBOM) with
Open Source Standards and Tooling appeared first on Linux
Foundation.

USN-4880-1:  OpenJPEG
vulnerabilities
It was discovered that OpenJPEG incorrectly handled certain
image data. An
attacker could use this issue to cause OpenJPEG to crash,
leading to a
denial of service, or possibly execute arbitrary code.
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