
How To: Properly Install
Proprietary Drivers in Ubuntu
There is some confusion about installing the proprietary
drivers in Ubuntu. This article hopes to clear that up by
telling you how to properly install drivers in Ubuntu.

First, this only works for the drivers that Ubuntu has access
to. In this case, it’s usually things like graphics cards,
sound cards, some networking gear, and things like that.

Ubuntu does not have all the possible drivers. If you have to
go get them from GitHub and compile them yourself, this
obviously isn’t the article for you.

One of the most confusing is the Nvidia video card drivers. If
you use Ubuntu, an official flavor of Ubuntu, or a derivative
of Ubuntu, DO NOT download the .run file from Nvidia’s site.
While it may work, it will quite possibly not work with dkms
and you will have to spend significant time fixing it every
time the kernel is updated. It quite likely lead to breakage.

Yes, this means having some patience. But, have some patience
because the drivers will make it down to the repos and will
have then been tested. The drivers you get from the official
repos will not only update, they’ll update with the rest of
the system AND they’ll work properly with the kernel updates.
When the kernel updates, the system itself will insert the
appropriate drivers calls.

Doing this any other way will quite likely lead to hardship –
and it’s a hardship that you don’t need to have. It’s a
hardship that’s easily avoided. If you read the forums and
question/answer sites, doing this the wrong way results in at
least one question almost every single day.

The first way is easy. It’s even in the GUI. Search your menu

https://linuxtips.gq/2021/03/11/how-to-properly-install-proprietary-drivers-in-ubuntu/
https://linuxtips.gq/2021/03/11/how-to-properly-install-proprietary-drivers-in-ubuntu/
https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

for ‘Additional Drivers’ or similar (it may be only listed as
“Software & Updates” depending on your Ubuntu flavor). It
looks like this:

This should be self-explanatory, so I will just leave this
here.

See? Pretty easy. Just pick what you want, apply the changes,
and reboot.

NOTE: You will need to have the ‘restricted’ repository
enabled in order to do this. That should be assumed, but some
of you may not know this. So, a quick screenshot should make
this even easier to figure out – it’s in the same app as the
above screenshot, but it’s in the first tab. It looks a little
like this:

The arrow should make it clear. That repo needs to be enabled
for this.

The second way is to use the terminal. Let’s go ahead and get
the terminal opened by pressing CTRL + ALT + T on your
keyboard.

Now, let’s check and see what drivers we can automatically
install from the terminal:

[code]ubuntu-drivers devices[/code]

The output should let you know what drivers are available for
your devices. Again, this is pretty self-explanatory. You
really don’t even need to enter that command, you can do it
all automatically and get the recommended drivers
automatically installed. It’s easy. Just run this:

[code]sudo ubuntu-drivers autoinstall[/code]

That will go through and install the recommended drivers for
your devices automatically. That will install the proprietary
drivers, the ones with binary blobs and decidedly not
opensource drivers. If those are the drivers you want, that’s
the easiest way to install them.

Simply run the command, reboot, and you’re done. Not only are

you done, you shouldn’t have to mess with them again – ever
again. They will update automatically, they will automatically
be applied when you update the kernel, and they will generally
just work.

For the time being, we’re ignoring the idea of using the
opensource drivers. I’ll simply say that I do quite well
without needing proprietary drivers. I hardly ever bother
installing them – unless I absolutely need a feature that’s
not offered with the opensource drivers. I find that it’s
still a working operating system and I can still easily meet
my goals. You do you and you make the decision, but at least
do it the right way after making that decision.

As always, thanks for reading. There’s a newsletter that will
email you when a new article is published. That’s all it does.
If you’re wanting to keep up with the site, that’s exactly how
you do it! Well, there are push notifications available for
those that prefer that. So, you do have choices! Either way, I
won’t send you any spam. I promise!

How To: Check CPU
Temperatures
This is obviously about Linux and, given that it’s Linux,
there are often multiple ways to accomplish things. This is
one way to check the CPU temperatures.

This one should be fairly short and straightforward. Once
again, crack open your favorite terminal emulator with CTRL +
ALT + T.

For this exercise, we’ll be using lm-sensors. Wikipedia

https://linuxtips.gq/2021/02/27/how-to-check-cpu-temperatures/
https://linuxtips.gq/2021/02/27/how-to-check-cpu-temperatures/
https://en.wikipedia.org/wiki/Lm_sensors

helpfully describes it as thus:

lm_sensors (Linux-monitoring sensors) is a free open-source
software-tool for Linux that provides tools and drivers for
monitoring temperatures, voltage, humidity, and fans. It can
also detect chassis intrusions.

It then promptly says that a citation is needed.

So, let’s check the man page. man lm-sensors has no entry, so
you’ll need the slightly less obvious man sensors. In this
case, the description is not much greater.

sensors is used to show the current readings of all sensor
chips. sensors -s is used to set all limits as specified in
the configuration file. sensors –bus-list is used to generate
bus statements suitable for the configuration file.

Alright, so let’s get this installed.

[code]sudo apt install lm-sensors[/code]

So far so good, but now we need sensors to find the hardware
and that’s done with this:

[code]sudo sensors-detect[/code]

That’s going to run and it’s interactive. You’ll need to type
“YES” over and over again and then finally hit the ENTER
button. But, once you’re done, it’s all over and you never
have to do it again – unless you add/change hardware that has
sensors.

Now that it’s installed, you can just run:

[code]sensors[/code]

If you are easily startled by the metric system, you can just
add the -f switch for Fahrenheit, like so:

[code]sensors -f[/code]

Congratulations! You can now easily tell how hot (or cold)
your CPU is running. You should also look up your CPU’s
temperature thresholds. This way you’ll be able to tell if
your CPU is running hotter than it should be running. Doing
this can save your hardware or give it greater longevity.

The newsletter works again. You can now sign up and get
notified of new articles. It’s painless, and I promise I won’t
send you any spam – nor give/trade your email address with
anyone for any purpose. (Frankly, I have zero motivation to do
so.) If you had signed up previously, you’ll need to do it
again, for I am lazy and there was no export and import
options. Thanks for reading! (Also, I hope you like the font
change!)

Realtek RTL8192EU and Linux:
It works!
Probably because I was scouring AskUbuntu and reading a number
of complaints about getting their wireless device working, I
decided to see exactly how difficult it was.

I have a computer that I use for testing and I mostly access
it by VNC. It has an unused wireless dongle and I figured now
was a good time to see if I can make it work.

The first step was to turn it on. Believe it or not, it
worked. It had a very, very weak signal even though it’s
within a few feet of the router. So, I cracked open my
terminal and entered:

https://linuxtips.gq/2020/12/06/realtek-rtl8192eu-and-linux-it-works/
https://linuxtips.gq/2020/12/06/realtek-rtl8192eu-and-linux-it-works/

inxi -Fc 0

Sure enough, I found this:

Device-2: Realtek RTL8192EU 802.11b/g/n WLAN Adapter type: USB

So, I turned to a search engine and entered:

Realtek RTL8192EU +Linux driver

I scanned the results and noticed that there was fairly recent
(mid-2018) GitHub page here. So, I headed there to read what
the author had to say.

Rather than playing around, I made sure I’d followed their
directions:

sudo apt -y install linux-headers-generic build-essential dkms
git

Except that’s not necessarily going to work, so I simply
removed the -y.

sudo apt install linux-headers-generic build-essential dkms
git

There. That’ll work. I mashed the enter button, entered my
password, and I downloaded the .zip file from the top of the
page while it installed. I didn’t really see any need to build
it myself, nor did I want the git hurdles (even though I’d
just installed it). So, I just downloaded it to /Downloads and
then extracted it into its own folder.

Once that was all done, I entered the newly created directory
and ran:

sudo ./install_wifi.sh

The sudo elevates my permission, the ./ tells it that I want
the file in the directory I’m in, and the install_wifi.sh is

https://github.com/clnhub/rtl8192eu-linux

the name of the script that will install the drivers
automatically. It will take a few minutes, even on modern
hardware, but it’s not a difficult task. If anything, it’s
straightforward and intuitive.

I followed that up with a reboot and, sure enough, I was then
able to use the driver and my signal strength was
significantly higher. That’t it. That’s all it took. Does it
seem hard? Probably. Once you’ve done it a few times, you’ll
be used to it. Working in the terminal is one of the greatest
things you can do with Linux. There’s no reason to be afraid
of it. Just know what the commands are going to do before you
go ahead and do them.

