How To: Enable SSH

In today’s article, we’ll learn about enabling SSH. SSH is a
useful tool for remotely managing your Linux computer. This is
a pretty simple, painless, and quick exercise.

Let’s say your computer is in another room, another state,
another country, or on another continent entirely. How are you
going to manage it? After all, we have servers across the
world and it is not even remotely economical to send a person
to administer each one of them in person.

On a home-use note, it’'s perfectly suitable to manage my own
router using SSH. It’s quick, easy, lightweight, effective,
doesn’t require an attached monitor, and more. What’s not to
like?

Installing SSH on Linux

My homemade router doesn’t have a keyboard attached. It
doesn’t have a monitor attached, so it’s not like I can just
easily walk over and deal with it.

I just got a new computer, a lovely laptop that I got for a
fantastic price. I got it to test Lubuntu. I don’t always want
to have to go over to the device and physically use it.

I have a dedicated server in Las Vegas. I live in Maine. It
wouldn’t be practical to fly out to Vegas every few days to
run updates on the server. It wouldn’t make financial sense to
go out there every time the server needed to be rebooted.

These are all great candidates for SSH. SSH stands for “Secure
Shell” and it’s a protocol. It’s not an application, and you
can use SSH for all those things. A great many applications
can communicate over the SSH protocol, including every
terminal emulator that I'm familiar with.


https://linuxtips.gq/2021/04/10/how-to-enable-ssh/
http://en.wikipedia.org/wiki/Secure_Shell

The man page defines SSH as:

ssh — OpenSSH remote login client

It has been around since the mid-90s and does nifty things
beyond allowing you to control the remote system with
commands, it also allows you to transfer files with things
like SCP and SFTP. It's right full of nifty features and you
might as well become familiar with it. I’ll possibly cover
both of those in a future article.

It's very, very easy to get going. Simple use your keyboard to
open the terminal, by pressing CTRL + ALT + T.

Now, simply type (this one can be easily adjusted to other
package managers):

[code]sudo apt install openssh-server[/code]

There.. You're done. Well, you are more or less done. You now
effectively have SSH running. It starts itself after you
install it. That'’s pretty handy!

Now, make sure you’re on the same subnet, and you can connect
to the remote computer — the computer where you just installed
and enabled SSH. You can do that in a couple of ways. You can
do it like this:

[code]ssh remote user@ip.a.d.d.r[/code]

You can switch the obvious for the obvious, but you will need
to know the IP address for the remote computer. That seems a
bit tedious, so let’s just skip that part. Rather than
remembering the IP address (which may change), just remember
the name of the device.

So, instead, you’d run:

[code]ssh remote user@host name.local[/code]



If that doesn’t make sense, this is how I'd connect to the new
laptop:

[code]ssh kgiii@kgiii-msi.local[/code]

Obviously, the hostname is ‘kgiii-msi’ and your hostname will
be different. It’ll be the name you gave the computer during
the installation process, typically during the same phase
where you generated your user account. If you don’t actually
know your hostname, you can easily find it. It’s simply:

[code]hostname[/code]

There’s more to this and we’ll likely cover that soon enough,
but that’ll get you started. If you have a firewall installed
and enabled, you may need to let SSH through if you want to
use it. This is such a simple thing that I'd be remiss in my
duties to not make folks aware of how simple it is.

And, with that, I thank you my dear reader for taking the time
out of your day to humor this old fool. Your feedback 1is
appreciated and keep signing up to that whole newsletter
thing. Being old, I tend to forget to submit and share these
articles elsewhere. Signing up means you have no excuses for
missing an article!

How To: Turn Your Linux Box
Into a WiFi Hotspot

Have you ever wanted to use your Linux computer as a wireless
hotspot? It’'s actually pretty easy. This article will get you
started and it really isn’t all that difficult. We will
actually be cribbing a bit of this article from the software’s


https://linuxtips.gq/2021/04/04/how-to-turn-your-linux-box-into-a-wifi-hotspot/
https://linuxtips.gq/2021/04/04/how-to-turn-your-linux-box-into-a-wifi-hotspot/

homepage, but with some more information given.

Make a Linux WiFi Hotspot

For many years, I used my own router that I had made. It was
built on Linux. The preceding version ran on BSD, but that’s
not important right now. Today, you can get a NUC or Pi for
dirt cheap and so making a new router is back on my list of
things to do.

All of the varied software and hardware components are already
there, but I want to enable wireless connectivity and that’s
what we’re going to look at today. The tool we’re going to use
is called ‘linux-wifi-hotspot’ Which is a great tool, complete
with GUI if wanted, written by lakinduakash. It has only been
around for a few years, but it’s spoken of very highly and it
just works and works well.

The software is easy enough to install. If you’re using
Debian/Ubuntu, just add the PPA and install the software. To
add the PPA, you just run:

[code]sudo add-apt-repository ppa:lakinduakash/lwh[/code]

On a modern 0S, you shouldn’t need to do this, but you might
want to go ahead and run a quick update with:

[code]sudo apt update[/code]
Then you can install the software. To do that, it’s just:
[code]sudo apt install linux-wifi-hotspot[/code]

If you want, you can visit the link above, click on releases,
and download the .deb file for the current release and just
install it with gdebi.

If you’re using Arch (or Arch based distros) it looks like you
can just go ahead and install it with:

[code]yay -S linux-wifi-hotspot[/code]


https://github.com/lakinduakash/linux-wifi-hotspot
https://linuxtips.gq/2021/02/25/fixing-gdebi-the-ugly-hack/

It should be noted that I did not actually test that very
well. I gave it a quick test in Manjaro and it said it
couldn’t find all the required packages. Manjaro is not Arch,
but based on it. I don’t have an Arch VM configured without
doing some serious digging through my backups, so I am unable
to confirm it.

Then, you can go ahead and start it. You can also go ahead and
make it start at boot, which would be prudent if you intended
to use this to make your own router. It’'s really self-
explanatory and without specific questions for using it, I'm
just going to refer you to the man page and the information at
the project page.

But, before you can even do all of this, you need to know that
your wireless adapter actually supports doing this. To find
out, you need to know if your wireless adapter supports “AP”
mode. AP obviously meaning ‘Access Point’.

To check this, you need to run the following command:
[code]iw list | grep AP[/code]

The project page is noticeably silent with this, but it’s a
necessary step. See, you need to know if your hardware
actually supports it before you even bother trying. Come to
think of it, I probably should have put this closer to the top
of the page! I ain’t editing that!

Anyhow, the output should contain one or both of the following
lines:

Device supports AP scan.

And/Or:

Driver supports full state transitions for AP/GO clients.

So long as you see one or both of those, you should be all set



to proceed. If you don’t see either of them, there’s no
software solution and you’ll need to get hardware that
supports AP mode. In many cases, that’ll mean doing a bunch of
research and may even mean contacting the vendor or OEM.

Nobody appears to have compiled a list of hardware that
supports AP mode and I don’t think I’'ve ever bought wireless
adapters that explicitly stated they do on the box. As near as
I can tell, more modern adapters support it just fine, so
you’'ll probably be alright.

Alright, there’s your article for the day. I have no idea if
you want to make a WiFi hotspot for your Linux box, but now
you know how. Thanks for reading and don’'t forget to sign up
for the newsletter. Also, if you rate the articles I’'ll be
able to see the kind of content you prefer. That’'d probably be
beneficial.

Let’s Spin up a Quick Python
Server!

Today we’'re going to use a basic Python server to share files
between multiple computers both quickly and easily, by using
tools you likely have by default.

First, let’s set the stage..

You're eight beers deep while sitting on your couch and
playing with virtual machines. You have already downloaded the
latest and greatest distro — but it’s way over on your desktop
and you’'re both lazy and not too sure about your walking
ability!


https://linuxtips.gq/2021/03/15/lets-spin-up-a-quick-python-server/
https://linuxtips.gq/2021/03/15/lets-spin-up-a-quick-python-server/

What to do? What to do?

Sure, you could just download the file all over again — but
you're aware of how much the project pays for bandwidth and
you're inebriated enough so that if you don’t do it right now
then it just might not get done! So, you need that file and
you need it with a quickness!

I'm going to make a huge assumption here. Someday, I'll write
an article explaining how, but for now we’re going to assume
that you have SSH (secure shell) enabled on your desktop (in
this scenario) and that you know how to use it. So, it’s with
a giant assumption and a leap of faith when I say that you’ve
successfully used SSH to get to your desktop and you've
already navigated to the directory where this latest and
greatest distro image resides.

NOTE: If you don’t have SSH enabled, surely you have access to
a search engine. Go figure it out! Eventually I’'ll write an
article about it, but there are already hundreds of tutorials
already out there.

Anyhow, sure.. You’'ve used SSH and now you could transfer the
file with SCP (secure copy protocol) if you wanted. That's all
well and good, but darn it we’re aiming for the most contrived
situation possible just so I can tell you how to spin up a
server with Python! So, for whatever reason, you’re hellbent
on doing this in your browser. And do this in your browser you
shall!

Yeah, there are a ton of ways to transfer files — many
(perhaps all) of them better than this! Though you could also
use this for testing your HTML and CSS skills. So, there’s
that! By the way, if my contrived scenario isn’t good enough
for you, you can make up your own reasons to do this. If your
ideas are any good, you can even contribute to the site!

Anyhow, you’'re now connected to that desktop with SSH and
you're in the directory where you store those important files.


http://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_copy
https://linuxtips.gq/contribute/

Now that you'’re there, run the following command:

[code]python -V[/code]

If you’'re using Python 1x or 2.x you should probably update,
but the magic server command is this:

[code]python -m SimpleHTTPServer[/code]
If you're using Python 3.x then the command will be:
[code]python3 -m http.server[/code]

For the record, the ‘-m’ is telling Python which module to
load. Either way, you can now open your browser and enter this
tidbit in the address bar:

[code]ip.address.of.desktop:8000[/code]

Obviously you should adjust it accordingly. If you’ve done it
right, it should look similar to this:

@ Directory listing for /

" C Y A Notsecure

Directory listing for /

Obviously it will not look the same for you. It’ll have your
files!

If you want, you can also connect via the hostname. In the



above example, the computer I was connected to is known as
‘kgiii-lmde’ and you need only add the .local for this to
work. See the image below:

@ Directory listing For / x

< C 1 A Notsecure | ([0S CIIRNI G EDO0

Directory listing for /

CentOS-Stream-8-x86_04-20201030-boot.is0
CentOS-Stream-8-x86_04-20201030-dvd1.iso
chakra-2017.10-goedel-x86_64.is0

cm-x86 64-14.1-r4-k419.is0
debian-10.8.0-amd64-DVD-1.is0
elementaryos-5. | -stable.20200814(2).is0
e0s-€0s3.9-amdo4-amd64.201109-173339.en.is0
Fedora-LXDE-Live-x86 04-33-1.2.is0
garuda-bspwm-linux-tkg-bmg-210101.iso

a hiventa Adaclitan amadisd son

See? No IP address required! You can also use
this for the above mentioned SSH!

Now, 1if you want to do so, you can also change the port
number. This is the same for both commands. In both cases,
just add your chosen port number at the end. Like so:

[code]python3 -m http.server 9000[/code]

And, again, it should look a bit like this:



@ Directory listing For / x

< C { A Notsecure | http:/kgiii-lmde.local:5000

Directory listing for /

CentOS-Stream-8-x86_04-20201030-boot.is0
CentOS-Stream-8-x860_64-20201030-dvd1.iso
chakra-2017.10-goedel-x86_64.is0

cm-x86 64-14.1-r4-k419.is0
debian-10.8.0-amd64-DVD-1.is0
elementaryos-5. | -stable.20200814(2).is0
e0s-€0s3.9-amdo4-amd64.201109-173339.en.is0
Fedora-LXDE-Live-x86 04-33-1.2.is0
garuda-bspwm-linux-tkg-bmg-210101.iso

a hiventa Adaclitan amadisd son

Note the changed port number. You should
probably avoid reserved ports.

Anyhow, you can use this for all sorts of things. You can now
navigate the user’s files with a web browser. If you’re really
insane, you can make this available over the internet by
enabling port forwarding — but I’'m gonna suggest you not do
that. If you’re going to do that, you should probably use
something more robust and with much finer permission controls.
It’'d also take quite a bit of work to turn this into a server
that’'d do anything more than offer up static files. I suspect
(but don’t know) that it’s about as secure as a screen door,
so putting this on the public web would just be silly. Don’t
do that.

Though my written use-case was very contrived, I find myself
using this easy server fairly regularly. I actually prefer to
use FTP to move files between computers, but I’'ll spin up a
quick Python server so that I can grab things like config
files and whatnot. Believe it or not, even wget works. In this
instance, if I wanted to grab that Debian IS0, I could just do
this:

[code]wget
http://kgiii-1lmde.local:9000/debian-10.8.0-amd64-DVD-1.iso[/co



de]

So long as the server is up and running, wget works. Granted,
there’s not too many contrived situations where I’'d need to
use wget on top of all this — but it’s fun to play with and
educational.

What sort of uses can you come up with? Feel free to leave
them as comments below. Who knows? Maybe they’ll end up being
motivations for future articles?

As always, thanks for reading. Don’t forget to sign up for the
newsletter. Chances are good that I'll not always be on the
forums and this is a way for you to keep track of what gets
published. I also won’t send you any spam, nor will I
trade/sell/give your email address to anyone.

Is my Internal IP Address
Static or Dynamic?

In the days of modern internet connections, you’'re almost
certainly using a router. Routers are different and may offer
you a static or dynamic internal address for use on your LAN.
This article will tell you how to tell the difference between
a static and dynamic IP address using the Linux terminal
emulator.

So, I'm going to assume you know what an IP address is. It’s
basically the numbers used to indicate a specific computer,
though it’s a bit more complicated and you can read the
Wikipedia page on IP addresses if you want a more detailed
explanation.


https://linuxtips.gq/2021/03/01/is-my-internal-ip-address-static-or-dynamic/
https://linuxtips.gq/2021/03/01/is-my-internal-ip-address-static-or-dynamic/
https://en.wikipedia.org/wiki/IP_address

A dynamic IP address is an IP address that changes from time
to time. A static IP address is one that doesn’t change. The
first one will be different after a set amount of time or
events, the second one will always be the same.

The benefits of a static IP address are many, chief among them
is consistency. This 1is true even on a LAN (Local Area
Network). If you don’t recall the device name, you can easily
access it by IP address. If the device doesn’t have a
hostname, you can access it by IP address, and the address
doesn’t change.

The benefits of a dynamic IP address are pretty much none,
unless you're a provider who wants to rotate through them
because of constantly changing devices. For you my delightful
reader, 1in your realistic use-cases, there are no real
benefits to having a dynamic IP address. They’re a great idea
when you have more devices than you have IP addresses — which
is very unlikely to be true if you’re reading this site for
Linux tips!

NOTE: Your Linux distro probably happily works with .local.
So, if you have a dynamic address you can still access it
through hostname.local. For example, this computer is ‘kgiii-
desktop’ and I can access it with ‘kgiii-desktop.local’ easily
enough.

Anyhow, it's pretty easy to tell. The first thing you need to
do 1s crack open your terminal. You can do this by pressing
CTRL + ALT + T. Then, just enter:

[code]ip addr[/code]
Now, just look for ‘valid 1ft’ and you’ll have your answer.

If it’s a dynamic IP address you’ll see something similar to
this:

[code]valid 1ft 39267sec[/code]


https://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Hostname

If it’s a static IP address, you’ll see something similar to
this:

[code]valid lft forever[/code]

See? I told you that it was pretty easy! Now that you know,
you can easily check and act accordingly. As always, thanks
for reading. Don’t forget to sign up for the newsletter.
You'll get an email when a new article is published and make
an old man happy!



