
Let’s Spin up a Quick Python
Server!
Today we’re going to use a basic Python server to share files
between multiple computers both quickly and easily, by using
tools you likely have by default.

First, let’s set the stage…

You’re  eight  beers  deep  while  sitting  on  your  couch  and
playing with virtual machines. You have already downloaded the
latest and greatest distro – but it’s way over on your desktop
and you’re both lazy and not too sure about your walking
ability!

What to do? What to do?

Sure, you could just download the file all over again – but
you’re aware of how much the project pays for bandwidth and
you’re inebriated enough so that if you don’t do it right now
then it just might not get done! So, you need that file and
you need it with a quickness!

I’m going to make a huge assumption here. Someday, I’ll write
an article explaining how, but for now we’re going to assume
that you have SSH (secure shell) enabled on your desktop (in
this scenario) and that you know how to use it. So, it’s with
a giant assumption and a leap of faith when I say that you’ve
successfully  used  SSH  to  get  to  your  desktop  and  you’ve
already  navigated  to  the  directory  where  this  latest  and
greatest distro image resides.

NOTE: If you don’t have SSH enabled, surely you have access to
a search engine. Go figure it out! Eventually I’ll write an
article about it, but there are already hundreds of tutorials
already out there.

https://linuxtips.gq/2021/03/15/lets-spin-up-a-quick-python-server/
https://linuxtips.gq/2021/03/15/lets-spin-up-a-quick-python-server/
http://en.wikipedia.org/wiki/Secure_Shell


Anyhow, sure… You’ve used SSH and now you could transfer the
file with SCP (secure copy protocol) if you wanted. That’s all
well and good, but darn it we’re aiming for the most contrived
situation possible just so I can tell you how to spin up a
server with Python! So, for whatever reason, you’re hellbent
on doing this in your browser. And do this in your browser you
shall!

Yeah,  there  are  a  ton  of  ways  to  transfer  files  –  many
(perhaps all) of them better than this! Though you could also
use this for testing your HTML and CSS skills. So, there’s
that! By the way, if my contrived scenario isn’t good enough
for you, you can make up your own reasons to do this. If your
ideas are any good, you can even contribute to the site!

Anyhow, you’re now connected to that desktop with SSH and
you’re in the directory where you store those important files.
Now that you’re there, run the following command:

[code]python -V[/code]

If you’re using Python 1x or 2.x you should probably update,
but the magic server command is this:

[code]python -m SimpleHTTPServer[/code]

If you’re using Python 3.x then the command will be:

[code]python3 -m http.server[/code]

For the record, the ‘-m’ is telling Python which module to
load. Either way, you can now open your browser and enter this
tidbit in the address bar:

[code]ip.address.of.desktop:8000[/code]

Obviously you should adjust it accordingly. If you’ve done it
right, it should look similar to this:

https://en.wikipedia.org/wiki/Secure_copy
https://linuxtips.gq/contribute/


Obviously it will not look the same for you. It’ll have your
files!

If you want, you can also connect via the hostname. In the
above example, the computer I was connected to is known as
‘kgiii-lmde’ and you need only add the .local for this to
work. See the image below:

See? No IP address required! You can also use
this for the above mentioned SSH!



Now, if you want to do so, you can also change the port
number. This is the same for both commands. In both cases,
just add your chosen port number at the end. Like so:

[code]python3 -m http.server 9000[/code]

And, again, it should look a bit like this:

Note  the  changed  port  number.  You  should
probably  avoid  reserved  ports.

Anyhow, you can use this for all sorts of things. You can now
navigate the user’s files with a web browser. If you’re really
insane,  you  can  make  this  available  over  the  internet  by
enabling port forwarding – but I’m gonna suggest you not do
that. If you’re going to do that, you should probably use
something more robust and with much finer permission controls.
It’d also take quite a bit of work to turn this into a server
that’d do anything more than offer up static files. I suspect
(but don’t know) that it’s about as secure as a screen door,
so putting this on the public web would just be silly. Don’t
do that.

Though my written use-case was very contrived, I find myself
using this easy server fairly regularly. I actually prefer to
use FTP to move files between computers, but I’ll spin up a



quick Python server so that I can grab things like config
files and whatnot. Believe it or not, even wget works. In this
instance, if I wanted to grab that Debian ISO, I could just do
this:

[code]wget
http://kgiii-lmde.local:9000/debian-10.8.0-amd64-DVD-1.iso[/co
de]

So long as the server is up and running, wget works. Granted,
there’s not too many contrived situations where I’d need to
use wget on top of all this – but it’s fun to play with and
educational.

What sort of uses can you come up with? Feel free to leave
them as comments below. Who knows? Maybe they’ll end up being
motivations for future articles?

As always, thanks for reading. Don’t forget to sign up for the
newsletter. Chances are good that I’ll not always be on the
forums and this is a way for you to keep track of what gets
published.  I  also  won’t  send  you  any  spam,  nor  will  I
trade/sell/give  your  email  address  to  anyone.


