
How To: Enable SSH
In today’s article, we’ll learn about enabling SSH. SSH is a
useful tool for remotely managing your Linux computer. This is
a pretty simple, painless, and quick exercise.

Let’s say your computer is in another room, another state,
another country, or on another continent entirely. How are you
going to manage it? After all, we have servers across the
world and it is not even remotely economical to send a person
to administer each one of them in person. 

On a home-use note, it’s perfectly suitable to manage my own
router using SSH. It’s quick, easy, lightweight, effective,
doesn’t require an attached monitor, and more. What’s not to
like?

Installing SSH on Linux
My  homemade  router  doesn’t  have  a  keyboard  attached.  It
doesn’t have a monitor attached, so it’s not like I can just
easily walk over and deal with it.

I just got a new computer, a lovely laptop that I got for a
fantastic price. I got it to test Lubuntu. I don’t always want
to have to go over to the device and physically use it. 

I have a dedicated server in Las Vegas. I live in Maine. It
wouldn’t be practical to fly out to Vegas every few days to
run updates on the server. It wouldn’t make financial sense to
go out there every time the server needed to be rebooted.

These are all great candidates for SSH. SSH stands for “Secure
Shell” and it’s a protocol. It’s not an application, and you
can use SSH for all those things. A great many applications
can  communicate  over  the  SSH  protocol,  including  every
terminal emulator that I’m familiar with.

https://linuxtips.gq/2021/04/10/how-to-enable-ssh/
http://en.wikipedia.org/wiki/Secure_Shell


The man page defines SSH as:

ssh — OpenSSH remote login client

It has been around since the mid-90s and does nifty things
beyond  allowing  you  to  control  the  remote  system  with
commands, it also allows you to transfer files with things
like SCP and SFTP. It’s right full of nifty features and you
might as well become familiar with it. I’ll possibly cover
both of those in a future article.

It’s very, very easy to get going. Simple use your keyboard to
open the terminal, by pressing CTRL + ALT + T.

Now, simply type (this one can be easily adjusted to other
package managers):

[code]sudo apt install openssh-server[/code]

There… You’re done. Well, you are more or less done. You now
effectively  have  SSH  running.  It  starts  itself  after  you
install it. That’s pretty handy!

Now, make sure you’re on the same subnet, and you can connect
to the remote computer – the computer where you just installed
and enabled SSH. You can do that in a couple of ways. You can
do it like this:

[code]ssh remote_user@ip.a.d.d.r[/code]

You can switch the obvious for the obvious, but you will need
to know the IP address for the remote computer. That seems a
bit  tedious,  so  let’s  just  skip  that  part.  Rather  than
remembering the IP address (which may change), just remember
the name of the device.

So, instead, you’d run:

[code]ssh remote_user@host_name.local[/code]



If that doesn’t make sense, this is how I’d connect to the new
laptop:

[code]ssh kgiii@kgiii-msi.local[/code]

Obviously, the hostname is ‘kgiii-msi’ and your hostname will
be different. It’ll be the name you gave the computer during
the  installation  process,  typically  during  the  same  phase
where you generated your user account. If you don’t actually
know your hostname, you can easily find it. It’s simply:

[code]hostname[/code]

There’s more to this and we’ll likely cover that soon enough,
but that’ll get you started. If you have a firewall installed
and enabled, you may need to let SSH through if you want to
use it. This is such a simple thing that I’d be remiss in my
duties to not make folks aware of how simple it is.

And, with that, I thank you my dear reader for taking the time
out of your day to humor this old fool. Your feedback is
appreciated  and  keep  signing  up  to  that  whole  newsletter
thing. Being old, I tend to forget to submit and share these
articles elsewhere. Signing up means you have no excuses for
missing an article!

Installing Google Earth on a
Remote Computer
I wanted to test Google Earth Pro, but I didn’t want to
install it on this computer. I wanted to install Google Earth
Pro on a remote computer and test it there.

This is really just an expression of why I like Linux as much

https://linuxtips.gq/2020/12/19/installing-google-earth-on-a-remote-computer/
https://linuxtips.gq/2020/12/19/installing-google-earth-on-a-remote-computer/


as I do. It allows me to be elegant and lazy!

First, I went to Google’s site for their Google Earth Pro
application  and  found  the  download.  It  tried  to  make  me
download it automatically, and I canceled that. Instead, I
right clicked on their link to ‘try again’ if the download
didn’t start automatically and copied that link. Tada! 

Then, I opened my terminal…

[code]ssh kgiii@kgiii-lmde.local[/code]

I entered my password and was logged into that computer in the
terminal. 

The next steps were just as easy.

[code]wget
https://dl.google.com/dl/earth/client/current/google-earth-pro
-stable_current_amd64.deb

 &&  sudo  apt  install  ./google-earth-pro-
stable_current_amd64.deb[/code]

Then I just waited and let it finish the task I’d set for it.
Now, when I next go to that computer, or if I login with VNC,
I can use Google Earth Pro and won’t have to go find the
download, download it, and wait for it to install before I can
use it. It’s already there, waiting for me to play with it.

How To: Find the hostname.
The hostname is, for many of you who will be reading this, the
same as your username. This is not always true.

Why is it important? Well, if I want to connect to a box on my

https://linuxtips.gq/2020/12/13/how-to-find-the-hostname/


network, I use its hostname. For example:

ssh kgiii@kgiii-lmde.local

That means I don’t need to know the IP address of the box, I
merely need to know the hostname. That, as I said, is usually
your username. On the off-chance that it isn’t, it’s easy to
find.

cat /proc/sys/kernel/hostname

And there you go.


