implementation in the Linux kernel. A local attacker could use this to
cause a denial of service or possibly execute arbitrary code.
(CVE-2020-25669)
It was discovered that the jfs file system implementation in the Linux
kernel contained an out-of-bounds read vulnerability. A local attacker
could use this to possibly cause a denial of service (system crash).
(CVE-2020-27815)
Shisong Qin and Bodong Zhao discovered that Speakup screen reader driver in
the Linux kernel did not correctly handle setting line discipline in some
situations. A local attacker could use this to cause a denial of service
(system crash). (CVE-2020-27830, CVE-2020-28941)
It was discovered that the memory management subsystem in the Linux kernel
did not properly handle copy-on-write operations in some situations. A
local attacker could possibly use this to gain unintended write access to
read-only memory pages. (CVE-2020-29374)
Michael Kurth and Pawel Wieczorkiewicz discovered that the Xen event
processing backend in the Linux kernel did not properly limit the number of
events queued. An attacker in a guest VM could use this to cause a denial
of service in the host OS. (CVE-2020-29568)
Olivier Benjamin and Pawel Wieczorkiewicz discovered a race condition the
Xen paravirt block backend in the Linux kernel, leading to a use-after-free
vulnerability. An attacker in a guest VM could use this to cause a denial
of service in the host OS. (CVE-2020-29569)
Jann Horn discovered that the tty subsystem of the Linux kernel did not use
consistent locking in some situations, leading to a read-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly expose sensitive information (kernel memory).
(CVE-2020-29660)
Jann Horn discovered a race condition in the tty subsystem of the Linux
kernel in the locking for the TIOCSPGRP ioctl(), leading to a use-after-
free vulnerability. A local attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2020-29661)